Deep Neural Networks for Information Extraction

Tomáš Gogár, Petr Baudiš
Information Extraction

Data prepared for computer analysis
Information extraction: EASY

- Databases
Information Extraction

Data partially prepared for computer analysis

Information extraction: EASY

- Markup documents
- Databases
Information Extraction

Data NOT prepared for computer analysis
Information extraction: DIFFICULT

- Semistructured documents
- Markup documents
- Databases

Complexity of Information Extraction vs. Structuredness
Information Extraction

- Plain Text
- Semistructured documents
- Markup documents
- Databases

Data NOT prepared for computer analysis

Information extraction: VERY DIFFICULT
Information Extraction

Structuredness

Complexity of Information Extraction

- Plain Text
- Petr Baudiš
- Semistructured documents
- Tomáš Gogár
- Markup documents
- Databases
Web Information Extraction - Current systems

- Web pages are created from Templates
- Learn template structure \Rightarrow Extract Information
Web Information Extraction - Current systems

- Web pages are created from Templates
- Learn template structure \Rightarrow Extract Information
- Template learning:
 - Manual annotation - Scraping
Web Information Extraction - Current systems

- Web pages are created from Templates
- Learn template structure \Rightarrow Extract Information
- Template learning:
 - Manual annotation
 - Automatic learning - repeated patterns
Web Information Extraction - Current systems

- Web pages are created from Templates
- **Learn template structure** ⇒ **Extract Information**
- **Template learning:**
 - Manual annotation
 - Automatic learning - repeated patterns

It’s just a hack!
What matters in Information Extraction

What is written?

Where it is written?

How it is written?
What matters in Information Extraction

What is written?

Where it is written?

How it is written?

[Screenshot]
What matters in Information Extraction

What is written?

Where it is written?

How it is written?

[SPATIAL BAG-OF-WORDS]

[Screenshot]
Intro: Bag-of-Words

Text representation often used in NLP:

(1) John likes to watch movies. Mary likes movies too.

(2) John also likes to watch football games.

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"John"</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"likes"</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"to"</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"watch"</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"movies"</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"also"</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"football"</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"games"</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Mary"</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"too"</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vectors:

Document1 = [1, 2, 1, 1, 2, 0, 0, 0, 1, 1]
Document2 = [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]
Intro: Hashing Trick

Text representation often used in NLP:

(1) John likes to watch movies. Mary likes movies too.

(2) John also likes to watch football games.

Vocabulary:

- Hashing function
 \[h(\text{john}) = 3 \]
 \[h(\text{likes}) = 1 \]
 ...

- Does not need vocabulary :-)
- Arbitrary size of result vector :-)
- Collisions :-(
Spatial Bag-of-Words

- We do not process text as a whole
- We process each TEXT NODE individually
Spatial Bag-of-Words

- We do not process text as a whole
- We process each TEXT NODE individually
Spatial Bag-of-Words

- We do not process text as a whole
- We process each TEXT NODE individually
Spatial Bag-of-Words

- We do not process text as a whole
- We process each TEXT NODE individually
Spatial Bag-of-Words

- We do not process text as a whole
- We process each TEXT NODE individually

TEXT ENCODED IN TENSOR
(SAME AS IMAGE)
Net architecture

Problem: Uses only local information!
Spatial likelihood
Final system

- Image of Page
- Spatially Encoded Text (TextMaps)
- Interpreted Web Page
- Positions of candidates: [120, 32, 140, 55], [30, 500, 200, 575]
- Neural net (Web Page features)
- Spatial likelihood
- argmax
 - $P(\text{class} \mid \text{candidate}_\text{context})$: [0.92, 0.23], ...
 - $P(\text{class} \mid \text{candidate}_\text{position})$: [0.65, 0.24], ...

Diagram showing the final system, where a combination of models and data sources (image, text, positions) are integrated through spatial and neural network models to determine a final output through an argmax process.
Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Image Accuracy</th>
<th>Price Accuracy</th>
<th>Name accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeuralNet + Spatial.</td>
<td>98.7±1.6</td>
<td>95.3±6.6</td>
<td>87.1±15.0</td>
</tr>
<tr>
<td>NeuralNet</td>
<td>95.9±2.9</td>
<td>86.2±9.3</td>
<td>78.4±19.0</td>
</tr>
<tr>
<td>Baseline: Heuristic + Spatial.</td>
<td>63.7±20.1</td>
<td>73.6±18.8</td>
<td>34.4±20.5</td>
</tr>
<tr>
<td>Baseline: Spatial</td>
<td>46.5±18.7</td>
<td>9.7±14.4</td>
<td>12.2±12.0</td>
</tr>
</tbody>
</table>

Table 3. Comparison of algorithms: mean and standard deviation of accuracy across 10 splits (in percents).

<table>
<thead>
<tr>
<th>Neural net inputs</th>
<th>Image Accuracy</th>
<th>Price Accuracy</th>
<th>Name accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screenshot + TextMap</td>
<td>95.9±2.9</td>
<td>86.2±9.3</td>
<td>78.4±19.0</td>
</tr>
<tr>
<td>Screenshot</td>
<td>93.5±7.4</td>
<td>73.3±19.4</td>
<td>73.4±16.0</td>
</tr>
<tr>
<td>TextMap</td>
<td>41.4±18.6</td>
<td>77.0±17.9</td>
<td>49.4±18.0</td>
</tr>
</tbody>
</table>

Table 4. Neural Net with different input data: mean and standard deviation of accuracy across 10 splits (in percents).
Results

Fig. 5. Examples of *current price* detection.
Results

Fig. 6. Examples of product names divided into two parts (manufacturer + model).
Future work

Machine learning:

- Solve global position problem: Attention network?
- Try to learn text features
- Try other similar tasks: ex. classification

Practical problems:

- Popup windows
- Information distributed in multiple DOM-Elements
Source code:
github.com/gogartom/TextMaps